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Abstract. A generalized Laplace transform approach is developed to study the eigenvalue
problem of the one-dimensional singular potentialV = −e2/|x|. Matching of solutions at the
origin that has been a matter of much controversy is, thereby, made redundant. A discrete and
non-degenerate bound-state spectrum results. Existing arguments in the literature that advocate
(a) a continuous spectrum, (b) a degeneracy of energy levels as a result of a hiddenO(2)
symmetry, (c) an infinite negative energy state and (d) an impenetrable barrier at the origin
are found to be untenable. It is argued that a judicious use of generalized functions, coupled
with some classical considerations, enables the conventional method of solving the problem to
recover precisely the same results which are shown to be in accord with an accurate semiclassical
analysis of the problem.

1. Introduction

Despite a long and cherished history of quantum mechanics, our understanding of singular
potentials is less than adequate. Accepting that their relevance may be open to question,
it would nevertheless be satisfying to be able to deal with singular potentials in the same
manner as one is able to deal with non-singular potentials.

Rather than pursuing a purely formal approach, a more rewarding procedure might be to
focus attention on specific but tractable models of such potentials. Here, we are concerned
with the exactly solvable problem of the one-dimensional potentialV = −e2/|x|. Note that
being a function of|x| it is not analytic (e.g.x = 0 is not just a pole), and the independent
variable spans the wholex-axis including the origin. Any solution should satisfy the wave
equation over the entire range of permitted values ofx.

The misleading formal resemblance of this problem to its three-dimensional counterpart
has earned it the name ‘one-dimensional hydrogen atom’ problem, or briefly, the 1H atom
problem. Historically, the 1H atom wave equation first appears as an approximation in
the theory of the exciton in a strong magnetic field (Loudon 1959). From the intimate
mathematical relationship between the Coulomb and oscillator systems (e.g. Quigg and
Rosner 1979) it naturally suggests itself as a worthy exercise in Schrödinger theory. Being
solvable it may serve to unravel some peculiarities of quantum mechanical behaviour in a
singular potential field.

The exact solution to the problem first appears in the pioneering work of Loudon (1959).
His detailed exposition reveals two unusual features of this one-dimensional system. First,
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its dimensionality notwithstanding, the discrete bound-state spectrum turns out to be doubly
degenerate. Secondly, the normal state (nodeless) has infinite negative energy. A much
more recent work by Davtyanet al (1987), that employs momentum representation, claims
to confirm these findings and ascribes them to a hiddenO(2) symmetry. That a three-
dimensional Coulomb problem hasO(4) symmetry and its two-dimensional counterpart
hasO(3) symmetry makes this deduction seem quite natural and hence very persuasive.
Unfortunately this result is incorrect as we show at the end of the paper. It is also significant
that the presence of a hidden symmetry connection allows a purely algebraic treatment of
the analogous Coulomb problems in higher dimensions whereas no such facility seems to
be forthcoming in the one-dimensional case. However, the contribution of Davtyanet al
(1987) is valuable for a plurality of reasons and we shall return to it later.

From the literature we have found that the aforementioned features have become a source
of controversy and confusion. A comprehensive list of references appears in Batemanet al
(1992) who assert that, since the potential is symmetric aboutx = 0, it suffices to consider
the problem on the half-line whereas the singularity atx = 0 merits no special consideration.
Benefiting from the Coulomb-oscillator duality mentioned above, they conclude that there
are no even-parity solutions present and the features found by Loudon vanish. Arguable
as their approach may be, their results seem to be correct. Unfortunately, they offer no
explanation for how Loudon’s conventional treatment and that of Davtyanet al (1987) ran
into trouble.

Many authors have focused attention on the viability of even-parity solutions. An
intuitive approach, relying on the general expectation that the zero angular momentum
(` = 0) solutions of a three-dimensional problem correspond to the odd parity solutions of
its one-dimensional counterpart, by Nieto (1979), suggests that an infinitely high barrier at
x = 0 should somehow be present thereby excluding the even solutions. Andrews (1976)
argues that, in spite of being attractive, the singularity atx = 0 is impenetrable, so that the
problem effectively divides into two disjoint parts. A two-fold degeneracy is thus inevitable
but noO(2) symmetry is implied (Andrews 1988). We shall demonstrate that although one
may rightfully choose to think of a barrier present atx = 0, any debate over its penetrability
is neither essential nor enlightening. For quantum mechanics, that deals with wavefunctions,
it is utterly irrelevant (cf Gostev and Frenkin 1987, 1988), whereas a classical particle with
finite energy can traverse through the origin (see section 2 below).

Heines and Roberts (1969) contribute a further complication via a critical analysis of the
solutions of the differential equation in hand. Besides confirming a discrete negative-energy
spectrum corresponding to odd-parity solutions, they also discover a continuous spectrum
that is unbounded from below. This inference is based crucially on how the solutions should
be joined at the origin, precisely the point where the potential is singular. Accordingly, we
also discuss this matter, remarking here by the way that Heines and Roberts failed to show
that their wavefunctions corresponding to a continuous spectrum are mutually orthogonal.
When dealing with singular potentials, it is indeed advisable to do so, as has been stressed
by Case (1950). Moreover, Andrews (1988) has already correctly observed that, at least, the
lowest group of their solutions do not form an orthogonal set (the situation is not rectifiable
using the Schmidt orthogonalization procedure).

Another way to deal with the singularity atx = 0 is to smooth the potential (Loudon
1959, Heines and Roberts 1969, Mehta and Patil 1978, van Haeringen 1978, Gesztesy
1980). Strictly speaking, the ‘point of singularity’ is to be excluded from the domain of the
Schr̈odinger operator which as a result becomes not self-adjoint and requires an extension.
The 1H atom problem has been considered from that point of view by Gesztesy (1980) and
by Gostevet al (1987), and their results justify in a sense our reasoning in section 4. Finally,
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the work of Gomes and Zimerman (1980) using the virial theorem is worth mentioning. It
recovers only the odd-parity solutions and a discrete, non-degenerate spectrum, precisely
the outcome of our study.

The primary purpose of this work is to examine the problem using integral transforms.
However, in view of the background presented in the foregoing coupled with the fact that
one-dimensional classical motion of a particle in the singular potential field has, to the best
of our knowledge, never been discussed previously, we section the study as follows.

Section 2 discusses some interesting classical aspects of the problem. One classical
feature will prove to be helpful in the analysis of the quantum motion of the particle. The
effect of smoothing the potential on the classical motion is also commented upon.

A thorough semiclassical treatment of the motion in the corresponding singular potential
well is the subject of section 3.

Section 4 considers the problem of matching the solutions atx = 0. The purpose of this
section is to systematically trace the roots of various controversies that have been mentioned
above. Eventually, we arrive at the correct solution to the problem using a conventional
quantum mechanical approach and a proper matching relation.

The principal contribution of this work is reserved for section 5. Here, the solution to
the problem is accomplished using integral transforms. It will be seen that this approach
is ideally suited to deal with the problems posed by the singularity atx = 0. There is no
need to directly address the problem of matching the solutions in this method.

Section 6 summarizes the results.

2. Classical motion and smoothing of the potential

Before embarking on the quantum mechanics of the given system, we consider certain
classical aspects of the problem from which we hope to benefit in the sequel. Recall that
whenever possible, a quantum Hamiltonian is obtained from its classical counterpart using
the substitution rule.

Incidentally, as has been pointed out by Nieto (1979), the one-dimensional potential
−2πe|x| rather thane/|x| corresponds to a positive charge at the origin which generates
the force field

F ′(x) = (−e)(−dV/dx) = −2πe2ε(x)

on an electron. Hereε(x) is a step-function sgnx that equals+1 for positivex and−1 for
negativex. In three-dimensions, this is equivalent to the field due to the coordinate plane
YOZ with uniform surface charge densityσ = e. Notice parenthetically that any physical
‘one-dimensional’ potential requires a source that is infinite in the OY and OZ directions,
so thatV (x) must actually tend to infinity and not to zero as|x| → ∞. Therefore the 1H
atom problem rather corresponds to a one-dimensional motion in the Coulomb field−e2/r

than a motion in true one-dimensional potential.
Comparing the previous expression for the force with the case in hand, we find (rigour

notwithstanding)

F(x) = e2 d

dx

[
1

|x|
]
= e2 d

dx

[
ε(x)

x

]
= −e

2ε(x)

x2
+ 2e2 δ(x)

x
. (1)

Clearly, this force is not purely attractive as it contains a repulsive singularity contributed
by the second term on the right-hand side of equation (1). Thus it appears that the potential
e/|x| disguises an ‘infinitely high’ (but ‘infinitely narrow’) repulsive barrier at the origin.
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To visualize the motion in such a field we consider its smoothed version using a limiting
representation for the step-functionε(x), say, for example,

ε(x) = lim
α→0

tanh(x/α).

Then:

F(x) = − e
2

x2

[
tanh

x

α
− x
α

(
cosh

x

α

)−2
]

which, for smallx, becomes

F(x) ' − 2e2

3α3
x.

This result is striking. The force provides harmonic oscillations about the point of stable
equilibrium x = 0, whose frequency grows unchecked asα → 0. Thus, the second
(repulsive) term in equation (1) makes the force to vanish (not infinitely increase!) at
x = 0, but it does not forbid a ‘penetration’ of the electron through the origin, that is
in contrast with the following confusing observation due to Andrews (1976): ‘even an
attractive singular potential might act as an impenetrable barrier in quantum mechanics’.

Incidentally, a truncated potential

V (x) =
{
e/|x| |x| > b
e/b |x| 6 b

with b → 0+, employed by Loudon (1959), behaves exactly like 2δ(x) at x = 0, so
that F(x) = 0 at x = 0 once again. However, another truncated potentialV (x) =
e/(|x| + b), b → 0+, used by Loudon as well as by Heines and Roberts (1969), van
Haeringen (1978) and Gesztesy (1980), does not satisfy the requirementF(x) = 0 atx = 0,
and, in our view, it is not a suitable smoothed out version of the potentiale/|x| (to say
nothing of the Coulomb-oscillator duality). Given its singular nature, smoothing of the
potential is not an advisable operation, but our basic conclusions happen to be correct in
the given context. This assertion is justified by the exact solution to the problem that we
briefly review below.

For bounded motions we put the total energyE to be negative and set it equal to−|E|,
so that,

−|E| = m

2

(
dx

dt

)2

− e2

|x|
whence

dx

dt
= ±

[
2

m

(
e2

|x| − |E|
)]1

2

. (2)

At the turning points,vx = dx/dt = 0. Classical motion is thus possible in the range
|x| 6 A, with the amplitudeA = e2/|E|. (We recall that the large semi-axis in the three-
dimensional Kepler problem isa = e2/2|E| = A/2). Focusing onx > 0, we routinely
arrive at the result

|x| = a(1− cosξ) (3)

whereξ is a parameter related to timet by:

ωt = ξ − sinξ ω =
√
e2/ma3. (4)
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To find a solution valid for allx in the allowed range, we must match its separate parts
at x = 0. For classical motion, it seems natural to requirex(t) to be continuous and the
direction of motion (sign ofvx) to be retained at the point. With this proviso, it suffices
to multiply equation (3) by a periodic step-functionφ(ξ) = [sin(ξ/2)]/| sin(ξ/2)| of period
4π which is equal toε(ξ) for −2π 6 ξ 6 2π , in view of the fact that during half a period,
according to equation (3),x increases from zero to 2a as ξ varies from zero toπ , then it
decreases back to zero asξ continues fromπ to 2π , going on to negative values for the
second half-period. Thus the complete solution is

x(t) = 2a[sin(ξ/2)]3/| sin(ξ/2)| (5)

which is seen to satisfy (as it should) the equation of motion by substitution in equation (2)
(an extraδ-function, resulting from differentiationε(ξ), is ineffective being multiplied by
the function (3) which vanishes atξ = 0).

The solution (5) has been found in a parametric form. Its explicit dependence on time
is given by the Fourier expansion:

x(t) =
∞∑
m=1

Am sin
mτ

2
Am = 1

2π

∫ 2π

−2π
x[ξ(t)] sin

mτ

2
dτ

whereτ = ωt , ω is given by (4). Substitution from (5) and integration by parts yield:

Am = a

π

∫ 2π

0
(1− cosξ) sin

mτ

2
dτ

= − 2a

πm

∫ 2π

0
cos

mτ

2
d(cosξ) = 2a

πm

∫ 2π

0
sinξ cos[m(ξ − sinξ)/2] dξ.

Splitting the interval of integration into two equal parts:(0, 2π) = (0, π) + (π, 2π),
one can see thatAm are different from zero for oddm = 2k + 1 only, being proportional
then to derivatives of the Weber’s functions,

Eν(z) = 1

π

∫ π

0
sin(νθ − z sinθ) dθ

see, for example, section 8.58 in Gradshteyn and Ryzhik (1965).
This enables one to express (5) as the following series:

x(t) = −2a
∞∑
k=0

E′k+1/2(k + 1/2) sin(k + 1/2)ωt ]/(k + 1/2) (6)

which is to be compared with the Bessel solution of the Kepler problem for an elliptic orbit
of eccentricitye:

xe(t) = a
[
− 3e/2+ 2

∞∑
n=1

J ′n(ne)[cos(nωt)]/n

]
(7)

that can be found for example in Watson (1958). The noteworthy features of the above
solution are as follows.

(i) The classical motion is described by an odd functionx(t) with only odd harmonics
in the Fourier series representation ofx(t) surviving. (In the quantum and semiclassical
cases, we shall find that only odd-parity wavefunctions are allowed.)

(ii) The amplitude of oscillations is twice as large as the semimajor axis of the
corresponding elliptic orbit for the same energy. The period of motion is also twice that for
Kepler motion. Such a doubling technically results from the fact that, as angular momentum
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assumes zero value, the leading singularityr−2 in the energy equation vanishes, leaving only
the ‘milder’ term |x|−1 in equation (2) which corresponds to another differential equation.

(iii) The function x(t) is continuous and differentiable as a generalized function.
(iv) At x = 0, vx = ∞, which is not surprising in view of the singular character

of potential. It implies that the classical particle spends negligible time near the origin.
(Physically, this seems to be the reason the particle escapes falling to the centre.) Quantum
mechanically, it should mean that the particle is unlikely to be found near the origin, i.e.
its wavefunction should vanish there. We must hasten to add that it is not incumbent
upon a quantum particle to closely mimic the classical expectation in this respect, a classic
example being provided by the case of a simple harmonic oscillator (the interested reader is
referred to Shankar, 1981). The fact thatvx →∞ asx → 0 also suggests that the classical
problem be better treated relativistically, but our interest being in the quantum motion, such
a digression would serve no additional purpose here.

(v) Quite important, motion with finite total energy is permitted, in spite of the
divergence of the potential and kinetic energy contributions atx = 0.

(vi) The presence of a penetrable repulsive barrier in the Newtonian force stands
vindicated by the exact solution. The ‘amplitude’ of velocity is infinite while that of
acceleration is indeterminate.

3. Semiclassical analysis

The one-dimensional hydrogen atom poses an interesting problem for semiclassical
consideration. A routine use of the Bohr–Sommerfeld quantization condition

2πnh̄ =
∮
p dx = 4

∫ xm

0
p dx = 4

∫ xm

0
(2mE + 2me2/x)1/2 dx

= 2π(2me2xm)
1/2 = 2π(−2me4/E)1/2 (8)

(wherexm = −e2/E > 0 since energy is to be negative for bounded motions) yields the
following energy levels:

E = −2me4/h̄2n2 (9)

which are four times those of the corresponding model in three dimensions and coincide
with them only if n� 1 is restricted to take either even or odd values.

Although the simple calculation has been suggested by Lapidus (1988) as a
supplementary example in an introductory quantum mechanics course, it is actually incorrect.
The point is that WKB-approximation, on which (8) is based, does not apply in this case
near the origin, because d(h̄/p)/dx = me2h̄(2mE + 2me2/x)−3/2/x2 ∼ x−1/2 is not small,
but tends to infinity asx → 0. Therefore one should be extremely careful with the
semiclassical treatment of singular potential wells, since it might fail not only close to
the turning points (where it normally does due to divergence of the particle’s wavelength),
but also for some points in between (due to divergence of the wavelength’s derivative, in
spite of the wavelength itself may vanish at the point). The familiar semiclassical solution
in a potential well is defined by two complementary expressions:

ψ(x) = p−1/2


C1 sin

[
(1/h̄)

∫ x

−xm
p dx + π/4

]
x > −xm

C2 sin

[
(1/h̄)

∫ xm

x

p dx + π/4
]

x < xm

(10)
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wherep = (2me2/|x| − 2m|E|)1/2. The condition (8) then stems from the requirement that
both parts of equation (10) are to represent the same wavefunction, and therefore they must
be equal at any point−xm < x < xm.

However, in the case under consideration, neither of the functions (10) satisfies the
Schr̈odinger equation in the region about the singular point of the potential for the violation
of the WKB-approximation there, that makes their immediate matching illicit. To bypass
the difficulty, the matching of solutions can be carried on through an intermediate function,
for which another approximate (but not semiclassical) solution in the region of singularity
may be taken. For the same reason, a similar procedure is usually followed near the turning
points for matching the respective semiclassical solutions inside and outside a potential
well (close to its walls) to get the expressions (10). In the immediate vicinity of the origin,
|E| � e2/|x|, and the Schr̈odinger equation reduces to:

ψ ′′ + (α/|x|)ψ = 0 (11)

whereα = 2me2/h̄2.
By the change of variables seen from equation (12) below it is transformable to the

Bessel equation, cf 8.491(7) in Gradsteyn and Ryzhik (1965), whose normalizable odd
solution,

ψ = ε(x)
√
|x|J1(2

√
α|x|) (12)

is seen to satisfy equation (11) by a direct substitution.
On the other hand, the even analogue of (12),

ψe =
√
|x|J1

(
2
√
α|x|

)
=
√
xε(x)J1

(
2
√
αxε(x)

)
(13)

is incompatible with equation (11), since a formal differentiation yields:

ψ ′′e = 2δ(x)
√
αJ0

(
2
√
α|x|

)
−
(
α/
√
|x|
)
J1

(
2
√
α|x|

)
.

The extra term here with 2δ(x) = ε′(x) does not vanish at the origin because
J0(2
√
α|x|) → 1 asx → 0. Therefore, only odd solution (12) really satisfies the original

equation (11).
The semiclassical functions (10) are to be compared (in respective regions) with the

asymptotic form of equation (12) for large values of argument (very small ¯h),

ψ ≈ Cε(x)|x|1/4 sin
(

2
√

2me2|x|/h̄− π/4
)

|x| � 1 (14)

but not with each other.
As |x| → 0, i.e. close to the origin, in expressions (10) the following approximations

should be made:∫ xm

x

p dx ≈
∫ xm

0
p dx −

∫ x

0
(2me2/x)1/2 dx

= (1/2)
∫ xm

−xm
p dx − 2

√
2me2x x � 1.

With this result one obtains the following expressions for the semiclassical solution near
the singular point of the potential:

ψ(x) ≈ |x|1/4


C1 sin

(
2

h̄

√
−2me2x − πme2

h̄
√

2m|E| −
π

4

)
x 6 0

C2 sin

(
2

h̄

√
2me2x − πme2

h̄
√

2m|E| −
π

4

)
x > 0

(15)
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where the value derived in (8) has been used for
∮
p dx.

The equations (15) and (14) describe the same wavefunction only if

πme2

h̄
√

2m|E| = kπ |E| = me4

2h̄2k2
C1 = −C2 = C(−1)k. (16)

The energy levels defined by (16) correspond to the familiar series for a three-
dimensional Coulomb system and coincide with those given by (9) only for evenn = 2k.
This is in accord with the Fourier expansion (6) of the one-dimensional classical motion
which contains only odd harmonics, whose frequency spacing turns out to be the same as
for three-dimensional Kepler orbits in expansion (7).

Incidentally, if one would multiply equation (11) byx (or |x|), the even function (13)
also becomes a solution of the ‘tampered’ equation, since the extraδ-function in ψ ′′ is
found then ineffective (being now multiplied byx). The energy levels (16) remain intact,
but the spectrum turns out to be doubly degenerate in conflict with the general result for
one-dimensional motion (recall that the corresponding proof is independent of a potential’s
shape). Thus, such a premultiplication is to be considered as inadmissible in the case of a
singular potential (cf section 5), while it is quite legitimate with non-generalized functions.
The role of odd and even wavefunctions in the case under consideration is also discussed
in the next section.

4. Matching of solutions in quantum mechanics

The Schr̈odinger equation of interest is

ψ ′′ −
[
λ− α

|x|
]
ψ = 0 (17)

whereλ = 2m|E|/h̄2, α = 2me2/h̄2 andE = −|E|. Although, the wavefunctionψ(x)
should be defined in the whole range|x| 6 ∞, it is customary to treat the regionsx > 0
andx 6 0 separately and then match the respective solutionsψ+ andψ− at x = 0. This is
tantamount to writing the complete solution as

ψ(x) = 2(x)ψ+(x)+2(−x)ψ−(x) (18)

where2(x) = [1+ ε(x)]/2 is the unit step-function. It must be stressed that bothψ+ and
ψ− are themselves defined over the whole range ofx, the2-functions picking out their
proper contributions toψ(x). In particular, even ifψ−(x) diverges asx → ∞ andψ+
diverges asx →−∞ (which is often the case), the relation (18) still defines a normalizable
functionψ(x).

Differentiating equation (18) yields straightforwardly

ψ ′ = 2(x)ψ ′+ +2(−x)ψ ′− + δ(x)(ψ+ − ψ−) (19a)

ψ ′′ = 2(x)ψ ′′+ +2(−x)ψ ′′− + δ(x)(ψ ′+ − ψ ′−). (19b)

The relationδ′(x)f (x) = −δ(x)f ′(x) has been used above. Equation (17) now reads

2(x)
[
ψ ′′+ − λψ+ +

α

x
ψ+
]
+2(−x)

[
ψ ′′− − λψ− −

α

x
ψ−
]
+ δ(x)(ψ ′+ − ψ ′−) = 0. (20)

Before continuing we should make the following observation concerning the role of
generalized functions in any attempt at a piecewise solution of Schrödinger equation. The
derivation of (20) illustrates that such a solution will in general enlist generalized functions,
however, they can be handled easily because frequently one deals with potentials that are
(a) non-singular, when bothψ andψ ′ are continuous and theδ-function term drops out;
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(b) symmetric, whenψ(x) becomes an eigenfunction of parity and we can always choose
ψ− = ±ψ+, so thatψ(x) can be constructed as

ψ(x) =
{
ψ+(|x|) even [2(x)+2(−x) = 1]

ε(x)ψ+(|x|) odd [2(x)−2(−x) = ε(x)] (21)

where, now,ψ+ must be considered for positive values ofx only. Hence, one is required
to solve only forψ+ in the rangex > 0, which means that the2-functions in equations
like (20) no longer have a role to play in the solution.

Returning to our problem, note that equation (21) still applies, even though the potential
function is singular atx = 0. Integrating equation (17) over a small interval(−σ, σ ), σ → 0,
we find the condition

ψ ′(0+)− ψ ′(0−) = α
∫ σ

−σ

ψ(x)

|x| dx (20′)

that must be obeyed. Since the integrand here may be singular, the result of integration
is arbitrary, with the outcome depending on the prescription adopted to deal with the
singularity. (Basically, conflicting claims in literature originate in different choices for
the value of this integral.) We believe it is in this sense that the quantum mechanics of
the problem in hand needs additional specification, although the approach based on integral
transforms (to be discussed in the sequel) needs no such supplementation and hence may
provide the more natural tool for investigating singular potential.

In the pursuit of a desirable prescription that would enable us to deal with the singularity,
we turn to classical mechanics. We have already learnt in section 2 that if−e2/|x| is
regarded as a potential energy of a physical system rather than merely ‘a term’ in the
differential equation, then, it must correspond to a zero classical force at the equilibrium
position x = 0. An inspection of equation (1) immediately suggests that this be ensured
provided {

1

|x|
}
x=0

= 2δ(x). (22)

Using equation (22) andf (x)δ(x) = δ(x)[f (0+)+ f (0−)]/2, equation (20′) translates
into the relation

ψ ′(0+)− ψ ′(0−) = α[ψ(0+)+ ψ(0−)] (23)

which provides an additional requirement permitting to pick out the correct solution from
a host of competing formal solutions. Incidentally equation (22) automatically ensures the
vanishing of the classical force atx = 0 in accord with the classical consideration of
section 2.

Since the condition (23) atx = 0 has been obtained from the relation (22) between two
generalized functions that is ‘pointwise’ and therefore not rigorous, it should be justified,
say, by methods of self-adjoint operator extensions (see e.g., Reed and Simon, 1975).
Generally there might be several self-adjoint extensions of the Hamiltonian corresponding
to different ‘physical’ situations, and therefore the problem of a ‘correct’ choice of the self-
adjoint extension is not just a question of mathematical ‘technique’ but it is closely related
to the physics of the system under consideration (Reed and Simon, 1975, chapter XI). A
self-adjoint extension of the Hamiltonian is defined by the ‘boundary conditions’ atx = 0,
see, for example, equation (3.1.9) in the book (Albaverioet al 1988), and our relation
(23) just corresponds to a particular choice of the constant in this condition (for continuous
wavefunctions). Thus the method justifies an introduction of the ‘zero-range’ potential in
our equation (22). Moreover, a consideration of deficiency indices of the operator in the
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same book by Albaverioet al (1988) shows that a self-adjoint extension with another type
of zero-range potential including the derivative of delta-function is also possible in the one-
dimensional case that actually justifies our manipulations with generalized functions in (19)
and (20).

The one-dimensional ‘Coulomb’ problem has already been solved by Gostevet al (1987)
using the results of self-adjoint operator extensions (Gostevet al 1986, 1987, Gostev and
Frenkin 1988). In those papers some other ‘induced’ (or ‘residual’) zero-range potentials
were considered, but instead of our equation (22) which is in accord with the classical motion
in the same field (section 2), another condition of ‘minimum number of delta-functions in
the induced zero-range potential’ had been used. As a result the authors, in particular,
regard even wavefunctions as admissible solutions to the problem, but their approach is
equivalent to a supplementation of the original potential|x|−1 with a highly singular zero-
range potential ln|x|δ(x) and actually comes to another problem. On the other hand, our
equation (22) means just a ‘specification’ of the original potential ‘at the point of singularity’
but not an addition of another term to it. Incidentally one more induced zero-range potential
due to the singularity of|x|−ν , ν > 0, has been also found by Ezawaet al (1975) using the
method of functional integration independently of the boundary condition (23).

Now, if we consider odd wavefunctions whose derivatives are even, and if we assume
that ψ(0) = 0 (as it should normally be for an odd function), equation (23) is trivially
satisfied. On the other hand, the derivatives of even functions are odd, so that the left-hand
side of equation (23) is, in general, different from zero and henceψ(0) must be non-zero.
This requirement rules out the even functions of Loudon (1959) that contain the factor|x|
makingψ(0) = 0. With these functions removed from contention, the degeneracy problem
disappears as well. Furthermore, ifψ(0) is finite,ψ ′(0) according to equation (23) cannot
be infinite. Hence, the even solutions of Heines and Roberts (1969) whose derivatives at
the origin are infinite, are also rendered inadmissible. The fate of the odd analogue of their
solutions that yield a continuous spectrum remains to be discussed.

To this end, we investigate the possible limiting behaviour ofψ near the origin. From
equation (17) this is easily seen to be either

ψ1 ∼ x
(

1− αx
2

)
or

ψ2 ∼ 1− αx ln x.

The considerations above have already ruled out the possibility of even solutions. An
odd solution withψ(x) ∼ x(1 − α|x|/2) near the origin, complies with the limiting
requirement (equation (23)). We shall see that such functions correspond to a discrete
negative energy spectrum. We now ask if solutions with aψ2-type limiting behaviour
are able to generate odd solutions with a continuous spectrum. The only option one can
rationally think of is a small distance behaviourε(x)[1 − α|x| ln |x|], but then, as can be
readily checked,ψ ′′ does not behave likeψ/|x| near the origin as it should according to
equation (17). Thus, neither a continuous spectrum nor an even solution of any kind is
compatible with our requirement (22) leading to equation (23).

To complete a solution of equation (17), keeping in mind the large distance behaviour
of ψ , we set

ψ = φ(x) exp

[−β|x|
2

]
= φ(x) exp

[−βε(x)x
2

]
. (24)
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The parameterβ will be specified shortly, andφ(x), as yet, an unknown function, obeys

φ′′ − βε(x)φ′ +
[
α

|x| − βδ(x)
]
φ = 0. (25)

In writing equation (25) we have chosen to setβ2/4 = λ. Moreover, in view of the short
distance behaviour ofψ (guaranteeing that it cannot diverge in the limit|x| → 0), we have
ignored a term containingxδ(x) in the expression forψ ′. It is seen from equation (25)
that the additional zero-range potentialβδ(x) appears atx = 0 again, but now due to the
assumed dependence of the wavefunction on|x| justified by its asymptotic behaviour as
x → ±∞. Such a term can be thought to belong to the original potential since the proper
generalized function|x|−1 actually ‘contains’ an arbitrary multiple ofδ(x), see, for example,
Lighthill (1975, section 3.3). An exact meaning to such a term can be given again by the
methods of self-adjoint operator extensions.

It is interesting to notice incidentally that if we replace the original potential−e2/|x|
by −v0δ(x), v0 = constant, in equation (17), we would recover from equation (25) the only
permitted solution to the zero-range potential problem ofδ-functional well, with the correct
energy levelE = −mv2

0/2h̄
2 and the wavefunction corresponding toφ(x) = constant, see

Albaverio et al (1988, theorem 3.1.4), while any otherφ would give a non-normalizable
solution. It will be readily appreciated that this is not the conventional manner in which the
δ-potential problem is treated since no ‘boundary condition’ atx = 0 need to be explicitly
used.

Recalling that an admissibleφ(x) behaves asx near the origin so that theδ-function
term in equation (25) is inconsequential, it is elementary to write down the solution we
seek. For finiteβ, it is

ψn(x) = BnxL1
n(βn|x|) exp

[−βn|x|
2

]
(26)

where,Bn are normalization constants,L1
n are associated Laguerre polynomials, andβn are

given by

βn = α

n+ 1
n = 0, 1, 2, . . . .

Hence, the allowed energy levels are given by

En = − me4

2h̄2(n+ 1)2
(27)

and form a non-degenerate discrete-energy spectrum the same as in equation (16).

5. The integral transform approach

An integral transform of the wavefunction is defined by its behaviour over the whole range
of the argument. Hence there is no need to appeal to any matching of separate solutions
for x > 0 andx < 0.

Employing a generalized Laplace type transform (Spain and Smith 1970) we try a
solution to equation (17) of the form

ψ(x) =
∫
C

exp[−f (x)t ]u(t) dt. (28)

Here, the contourC of the integration (which is in the complext-plane) as well as the
functions,f (x) andu(t), are additional ‘degrees of freedom’ unspecified as yet. Given that
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the potential depends on|x|, a natural choice forf (x) is |x| = ε(x)x. Defined in this way,
ψ(x) is an even function ofx, corresponding to the choiceψ = ψ+(|x|) in equation (21).
Equation (28) then yields

ψ ′′ =
∫
C

[t2− 2tδ(x)]e−|x|t u(t) dt. (29)

Substituting equations (28) and (29) in equation (17) and writingλ = β2/4, we now have∫
C

[
t2− β

2

4
+ α

|x| − 2tδ(x)

]
u(t)e−|x|t dt = 0. (30)

Here, again, a zero-range potential 2tδ(x) emerges (whose intensity depends on the variable
t) due to the same reason as in equation (25), whereas for an odd wavefunction the
corresponding terms effectively vanish, see equations (32) and (33).

However, equation (30) forx = 0 is different from that forx 6= 0. It follows
immediately that a functionu(t) that is independent ofx, cannot satisfy it. In accord
with our previous conclusions, we see once more that an even function of this type cannot
satisfy equation (17). Left with the sole alternativeψ = ε(x)ψ+ in equation (21), we now
try

ψ(x) = ε(x)
∫
C

e−|x|t u(t) dt (31)

so that

ψ ′′ =
∫
C

[2δ′(x)− 4tε(x)δ(x)+ ε(x)t2]e−|x|t u(t) dt. (32)

The product of two generalized functionsε(x)δ(x) is undefined. Here we adopt the natural
choice to set it equal to zero because such a choice is not contradicted by any known
fact. For example, if we multiplyε(x)δ(x) by a ‘good’ even function, exp[−|x|t ], and
integrate from−σ to σ letting σ → 0, then the integrand being odd and the integration
being symmetric, the integral vanishes. (In other words, the principal value of the integral
is zero.) Also, this choice is in harmony with the value2(0) = 1

2 recommended by Jauch
and Rohrlich (1980), if one remembers thatε(x) = 22(x)− 1. Finally, differentiating the
relationε2(x) = 1, the resultε(x)δ(x) = 0 emerges again.

Employing the relationf (x)δ′(x) = −δ(x)f ′(x), we now arrive at the equation∫ [
t2− β

2

4
+ α

|x|
]
u(t)e−|x|t dt = 0. (33)

Using the fact that exp[−|x|t ] dt as a function of t is equal to
−d [(1/|x|) exp(−|x|t)] and integrating the first term in equation (33) by parts, one now has

1

|x|
∫
C

{
d

dt

[(
t2− β

2

4

)
u(t)

]
+ αu(t)

}
e−|x|t dt = 0 (34)

provided,

1

|x|1C

[
e−|x|t

(
t2− β

2

4

)
u(t)

]
= 0 (35)

where1C stands for the change in the value of the function in going from one end of the
contour to the other.
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To satisfy equation (34), one can take foru(t) the general solution of the simple
differential equation making the braces in equation (34) equal to zero:

u(t) = B
(
t + β

2

)α/β (
t − β

2

)−α/β (
t2− β

2

4

)−1

B = constant (36)

whence,

ψ(x) = Bε(x)
∫
C

e−|x|t
(
t + β

2

)ν−1(
t − β

2

)−ν−1

dt ν = α

β
> 0 (37)

provided

1

|x|1C

[
e−|x|t

(
t + β

2

)ν (
t − β

2

)−ν]
= 0. (38)

Finally, the contourC should be chosen to satisfy equation (38). Ifx 6= 0, there
are two obvious choices. First, a contour that starts at infinity, goes once around the
point t = β/2 and returns to infinity, so that the exponential takes the zero values at its
ends (β > 0 for a normalizable function). Second, a contour that starts at infinity and
terminates at the pointt = −β/2 where the first bracket vanishes. The integrals appearing
in equation (37) corresponding to the two contours mentioned can be expressed in terms
of Whittaker functions, using their integral representations (Whittaker and Watson 1973).
These possibilities result in no discretization of energy, so that odd solutions analogous to
the even ones of Heines and Roberts (1969) (that lead to a continuous spectrum) are the
outcome.

However, forx = 0, neither of these contours comply with the requirement imposed
by equation (38), since its left-hand side manifestly diverges. The only way to save the
situation forall x is to avoid going to infinity and choose, instead, a closed (finite) contour
C surrounding the pointt = β/2, restrictingν to be an integer. This makest = β/2 a
pole instead of being a branch point. Equation (38) is now trivially and identically satisfied,
the end points of the contourC being the same and the function of interest turning single
valued. Thus,β = α/ν = α/(n + 1) = βn, n = 0, 1, 2, . . ., reproducing the spectrum
reported in equation (27). (The caseν = 0, β = ∞, that has been excluded here, will be
commented upon in due course.)

Using residue theory, the wavefunctions are straightforwardly found to be

ψn(x) = Bnε(x)

(n+ 1)!
eβn|x|/2

dn+1

dβn+1
n

(βnne−βn|x|). (39)

Invoking Rodrigues representation for the Laguerre polynomials, equation (39) can be
verified to be the same as equation (26), as should be the case. The result takes a more
conventional form if the relation(
t + β

2

)ν (
t − β

2

)−2−ν
dt = −[(ν + 1)β]−1 d

[(
t + β

2

)ν+1(
t − β

2

)−1−ν]
is used before integrating equation (37) by parts and the residue theorem applied
subsequently.

The above demonstration accomplishes the principal goal of this work. However, with
the aim of shedding more light on the problem we try to understand, how Davtyanet al
(1987) employing a Fourier transform approach (momentum representation), happened to
discover an additional set of levels with even parity and degenerate with the ones reported
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here. To this end, it is convenient to introduce the following self-evident representation for
the potential in hand, namely:

1

|x| =
∫ ∞

0
e−γ |x| dγ. (40)

Let

ψ(x) = 1√
2π

∫ ∞
−∞

eipxa(p) dp. (41)

The momentum functiona(p) is found to satisfy the integral equation

a(p) = iα

2π

1

p2+ β2/4

∫ ∞
0
ε(γ ) dγ

∫ ∞
−∞

a(w) dw

w − p + iγ
. (42)

The convolution theorem and equation (40) have been used in equation (17) to arrive at
the above expression fora(p). Assuming thata(p) has no essential singularities (only
poles) and closing the contour by an infinitely large semi-circle in the complexw-plane, we
recover our previous solutions with the anticipated quantization conditionβn = α/(n+ 1).
No degenerate spectrum materializes.

Now we focus on the difference between our procedure and that of Davtyanet al (1987).
These authors premultiply equation (17) by|x| prior to taking the Fourier transform which
is a questionable operation when dealing with non-analytic functions (cf the last paragraph
concluding section 3). Potentially, it is capable of inducing features that may be alien to the
original equation. We illustrate this below. Consider, for example, the Fourier transform of
the functionψ0(x) for n = 0 (see equation (26)). Its even and odd counterparts are

8{ψodd} = 8{xe
−β|x|

2 } = iβp

(p2+ β2/4)2
= Im

1

(p − iβ/2)2
(43a)

and

8{ψeven} = 8
{
|x|e−β|x|2

}
= p2− β2/4

(p2+ β2/4)2
= Re

1

(p − iβ/2)2
. (43b)

Direct substitution shows that equation (43a) satisfies equation (42) whereas
equation (43b) does not. On the other hand both the above functions satisfy the
corresponding equation of Davtyanet al (1987) wherein a premultiplication by|x| has
already been effected. Hence, the degeneracy that obtains in their work has been
inadvertently injected from outside. This can be also seen from equation (25) whose odd
solutions (that are required to vanish at the origin) remain immune to the addition of a
δ-function perturbation to the potential (regardless of the sign and strength of the added
term). However, such an addition may change entirely the status of even solutions. In
particular, aδ-function term, like the last term in the square brackets of equation (25), can
be improperly washed out by the aforementioned premultiplication, so that both even and
odd functions will satisfy the modified equation, introducing an artefact degeneracy.

Finally, we return to infinite energy state (β → ∞) that emerges through Loudon’s
(1959) treatment and could supposedly represent the ground state of the 1H atom. According
to Loudon, the normalized wavefunction of such a state is

√
β/2 exp(−β|x|/2), β → ∞,

i.e. the probability density corresponds to aδ-function distribution. (Stated crudely, the
wavefunction behaves like the square-root of aδ-function.) Although the Schrödinger
equation is trivially satisfied by the function for anyx 6= 0, it is straightforward to check that
for x = 0 it is not. This alone suffices to rule out any further consideration. Alternatively,
substituting the above function in equation (17) and using equation (40), one must have

α

∫ ∞
0

e−|x|(γ+
β

2 ) dγ − βδ(x)e−β|x|2 = 0. (44)
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But equation (44) cannot be satisfied atx = 0 that is seen by integrating it fromx = −σ
to x = +σ and lettingσ → 0, β → ∞. Such a failure is consistent with the result we
established earlier that even functions are not admissible as solutions.

However, one could suggest that, physically, the object of interest is|ψ |2. Hence,
going beyond Loudon, let us construct the odd functionψ(x) = ε(x)√β/2 exp(−β|x|/2)
corresponding to the second option in equation (21). This leaves|ψ |2 unaffected, since,
ε2 = 1. Moreover, equation (17) is now trivially satisfied for allx, including the point
x = 0. Technically, this liquidates our previous objection to the feasibility of the even
parity state. However, asβ → ∞, the wavefunction tends to zero everywhere in a way
that theδ-function probability distribution still holds. Such a possibility, to the best of
our knowledge, has never been noticed in quantum mechanics previously. The Fourier
transform of this function,ψ(x) = ε(x)√β/2 exp(−β|x|/2), is

a(p) = − ip
√
β

2π(p2+ β2/4)

and vanishes everywhere in the limitβ →∞. No wonder, such a function trivially satisfies
both our and Davtyanet al’s (1987) integral equation. Basically, in the limitβ →∞, the
function a(p) becomes zero identically, i.e. the Fourier transform of such a ‘generalized’
function makes no sense. For completeness, we note that our (as well as Davtyanet al 1987)
momentum space equations are also satisfied by the original Loudon’s even counterpart of
the above function witha(p) vanishing everywhere (asβ →∞) again.

In our view, such a state should have been discarded on physical grounds alone.
Although the corresponding function appears in the semiclassical limit, it cannot belong to
the family of solutions given by Eq. (26). Were it not the case, the entire set of remaining
states with finite energies should be inaccessible and the very discussion of the problem
becomes less than meaningful. An elegantly simple mathematical argument due to Andrews
(1966) reaches the same conclusion. In spite of it all, it has served, nevertheless, to raise a
deeper question of a more general nature. It is this. Is aδ-function probability distribution
admissible in quantum mechanics? However, an attempt to discuss this problem would lead
us far beyond the scope of this paper.

6. Summary

The salient features of this study may be summed up as follows.
(i) The Bohr–Sommerfeld quantization condition does not apply as such to the case of

a singular potential well which requires a comprehensive semiclassical analysis.
(ii) Contrary to repeated claims in the literature, the discrete energy levels of the 1H

atom are non-degenerate. Only odd-parity solutions are admissible. Theδ-function terms
in the second derivatives of the even functions are essential and may not be ignored.

(iii) The results based on limiting procedures applied to smoothed potentials are not
reliable in the case of singular potentials. Stated simply, given the solutions to the problem
of a HamiltonianH(g), those of the HamiltonianH(0) are not necessarily recovered by
letting g → 0. For the case of singular potentials, this circumstance is not unfamiliar
(Gesztesy 1980, Chhajlany 1992). On the other hand, proper equations involving generalized
functions have been able to lead us to the correct result in the present case.

(iv) Multiplication of all terms in a differential equation by a function of the independent
variable admits the risk of distorting the properties of its solutions, in cases when the
equation contains singular, non-analytic coefficients and/or has non-analytic solutions. In
particular, in the present example, the even functions that are not solutions to the original
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equation manage to satisfy the modified equation. Such operations are best avoided. The
result of tampering with equation (17) has been to ascribe anO(2) symmetry to a problem
that indeed has none.

(v) For potentials containing an essential singularity, some supplementary guidance
may be needed so that the singularity can be dealt with meaningfully. In our case, we have
appealed to classical mechanics to extract the appropriate specification. This contradicts no
dictum of quantum mechanics and as a bonus, ensures that its limiting case is consistently
accommodated. Whether this is a universal recipe is not for this study to spell out, attention
here being confined to a specific Hamiltonian. That a correct element was injected is borne
out by the independent integral transform approach that has the merit of demanding no
supplementary specification, explicit matching of solutions being not the means of extracting
the quantization for it.

(vi) There is no scope for a continuous bound-state spectrum. This results from our
insistence that the Schrödinger equation be satisfied forall x, (x = 0 included).

(vii) An even-parity nodeless function has been shown to be inadmissible. On the other
hand, an odd solution corresponding to infinite binding energy turns out to represent a
trivial solution of the integral equation in that the associated momentum function vanishes
everywhere.

(viii) In effect, the 1H atom possesses only a non-degenerate spectrum with a Rydberg
progression of levels that replicates the spectrum of a three-dimensional Coulomb system.
Applied properly, the well established machinery of quantum mechanics suffices to handle
this problem that features an essential singularity in the permitted domain of motion of the
particle.
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